An individual-based analysis of the variability of eggs and their newly hatched larvae of Atlantic cod (Gadus morhua) on the Scotian Shelf

Thomas J. Miller, Tomasz Herrera, and William C. Leggett

Abstract: We assessed the seasonal pattern of size variation in cod eggs on the Scotian Shelf region of the Northwest Atlantic during the period March 1991 - May 1993. Cod eggs were present from October to May during the surveys. Spawning was not strongly bimodal. There was a dominant autumn peak, in contrast to the historically dominant spring spawning. Egg diameter varied seasonally. Seasonal temperature patterns explained 52% of the variation in egg diameter. By incubating the eggs on-board ship, we also assessed the seasonality of the standard length (SL) of larvae that hatched from these eggs. Larval SL also varied seasonally. Egg diameter and SL were significantly correlated, but the correlation was weak ($r^2 = 0.3$). However, the strength of correlation was consistent with laboratory estimates based on individual data. The results suggest that previous estimates of the egg size - larval size correlations are inflated. Temperature exerted a significant effect on both egg diameter and larval size, and is hypothesized to be the agent responsible for the observed seasonal variation.

Résumé: Nous avons évalué l'évolution saisonnière de la taille des œufs de la morue dans la région de la plate-forme de la Nouvelle-Écosse, dans le nord-ouest de l'Atlantique, de mars 1991 à mai 1993. Les œufs de morue étaient présents dans le milieu d'octobre à mai. La police était le plus fortement bimodale. On observait un pic automnal dominant, contrairement aux observations historiques faisant état d'une ponte printanière plus importante. Le diamètre des œufs variait selon la saison. Les variations saisonnières de la température expliquent 52% de la variation observée dans le diamètre des œufs. L'incubation des œufs à bord du bateau nous a permis de déterminer que la longueur standard (SL) des larves issues de ces œufs variait aussi selon la saison. On a observé une corrélation significative, mais faible ($r^2 = 0.3$) entre le diamètre des œufs et leur longueur standard. Toutefois, ce degré de corrélation concordait avec les estimations établies en laboratoire à partir de données individuelles. Les résultats portent à croire que les estimations antérieures de la corrélation entre la taille des œufs et la taille des larves sont exagérées. La température a exercé un effet significatif tant sur le diamètre des œufs que sur la taille des larves, ce qui donne à penser qu'elle pourrait être l'agent responsable de la variation saisonnière observée.

Introduction
Owing to the highly variable nature of recruitment in fisheries, a mechanistic understanding of its regulation has been elusive (Taggart and Frank 1990). Yet, this understanding is critical to our ability to effectively regulate and exploit fisheries (Fritz et al. 1999). Recruitment variability is thought to result from variable survival during early life stages (for reviews see Sissenwine 1984; Crowder et al. 1992). Consequently, much effort has been directed at investigating changes in abundance and mortality during this phase. However, this traditional approach has shortcomings. Bradstreet (1992) has pointed out that estimates of abundance and mortality rates with the precision necessary for accurate prediction of recruitment are unlikely to be achieved. Furthermore, even if the estimates are perfect, the processes controlling recruitment may not be well described by average values (Pepin and Miller 1993; Ricci et al. 1993). As the

Received December 10, 1993. Accepted October 24, 1994.

T.J. Miller, T. Herrera, and W.C. Leggett. Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H3A 1B1, Canada.

1 Present address: Chesapeake Biological Laboratory, University of Maryland, Solomons, MD 20688-0038, U.S.A.
2 Present address: Department of Biology Queen’s University, Kingston, ON K1A 0E6, Canada.

dynamics of the average individual may not be equivalent to the average dynamics of all individuals, the use of single aggregate values may produce misleading interpretations (Lomnicki and Symonides 1990; Chambers 1993; Pepin and Miller 1993). For example, Rice et al. (1993) demonstrated that knowledge of growth rate is insufficient to predict survival rates in a cohort of larval exposed to size-dependent predation. Therefore, to understand the underlying mechanisms, we must include variability among individuals. These problems with the traditional approach lead to a shift in focus toward investigating the characteristics of those few animals that do survive to recruit to the population (see reviews in DeAngelis and Gross 1992).

The variation present in egg and larval sizes, together with variability in other early life-history traits, represent the material on which sources of differential mortality can act, and from which survivors will be drawn (Chambers et al. 1988, 1989). Thus, quantifying this variation is an essential first step to determining the degree of phenotypic selection (Chambers 1993) and, ultimately, of recruitment variability. Variation in early life-history traits occurs at different levels of organization. For example, egg size varies among populations and stocks within species (Blaxter and Hempel 1963; Bagena 1969; de Ciechomski 1973; Marsh 1984; Hinckley 1990; Buckley et al. 1991a; Bradford and Stephenson 1992 and others; among individuals within a population (Bagena 1969; Rana 1985; Springate and Bromage 1985; Chambers et al. 1989; Kjesbu 1989; Hinckley 1990 and others), and within individuals, both over the larval life cycle (Snedeker 1984; Kjesbu 1989; Buckley et al. 1991b; McEvoy and McEvoy 1991 and others). As egg size and larval hatching size are covariations, it is a reasonable assumption that variation in larval hatching size at all three levels. Moreover, variation in egg and larval size at all three levels appears to have important implications for larval survival (Bagena 1969; Knutsen and Tilsed 1985; Rana 1985; Marsh 1986; Chambers et al. 1988, 1989; Buckley et al. 1991b; Hutchings 1991).

Atlantic cod (Gadus morhua) exhibit variation in egg and larval sizes at all three levels of organization outlined above. Cod are widely distributed in the North Atlantic, inhabiting coastal waters from 37°N to the sub-Arctic (Scott and Scott 1988). They are deterministic spawners with high fecundity and a prolonged spawning season, overlapping entire ranges. Spawning occurs almost year round, with peak spawning activity varying among locations (Hardy 1978). In Northeast Atlantic waters, spawning typically occurs between February and April (Serebyakov and Aldanov 1984; Ellertsen et al. 1989; Hessen and Rijnsdorp 1989), whereas in Northwest Atlantic waters, spawning can peak from November to May (McKenzie 1940; Fahay 1983; Markle and Frost 1985; Brandel and Harkey 1992). Cod eggs are pelagic, spherical, and vary in diameter from approximately 1.1 to 1.7 mm (Knutsen and Tilsed 1985; Markle and Frost 1985). Individual females may spawn many times in a season (Kjesbu 1989; Kjesbu et al. 1991). The mean size of eggs in the first batch of eggs produced in a season increases with the size and age of the female (Kjesbu 1989). However, the size of eggs in subsequent batches declines (Kjesbu 1989). Egg and larval sizes are positively correlated (Knutsen and Tilsed 1985). Larval standard lengths at hatching vary between 3 and 5 mm (Hardy 1978). Larvae remain in the pelagic zone for several months, feeding principally on copepods (Skreslet 1989) and then gradually shift to the benthic habitat characteristic of the juveniles.

The Ocean Production Enhancement Network (OPEN) research programme was designed, in part, to provide detailed information on all life-history stages of Atlantic cod. One of OPEN's objectives was to quantify the variability in cod eggs and larvae in time and space. As many traits related to early survival are size dependent (Miller et al. 1988) we focus on initial size variability. Here we report the seasonal pattern in egg size and subsequent larval size of cod on the Scotian Shelf. The data we present are unique for field specimens, because they relate directly, and at the individual level, the patterns of covariance in egg size and larval hatching size.

Methods

We conducted 29 cruises on the Scotian Shelf from March 1991 to May 1993 (Fig. 1). The Scotian Shelf is a coastal system characterized by a series of shallow banks and deep basins that were formed during the last glaciation. Banks are characterized by water depths of less than 50 m, and basins by depths of greater than 100 m. Maximum water depth in the area we sampled was 148 m. The shelf is affected by two currents. The Nova Scotian current brings cold, freshwater southwestward along the coast from the Gulf of St Lawrence. The Gulf Stream brings warm, salty water northeastward along the shelf break from midlatitudes. O'Boyle et al. (1984) give a general description of the Scotian Shelf system.

On twenty-six cruises we sampled a rectangular grid of 45 stations separated by a distance of approximately 30 km at monthly intervals (Fig. 1). These broad-scale survey cruises were designed to provide information on the temporal and spatial distribution and abundance of cod eggs, larvae, and juveniles. Three of the 29 cruises were designed to track a single patch of eggs and larvae over smaller spatial scales for up to 20 days to investigate the biology of the cohort over time. On these tracking cruises, stations were distributed irregularly in space.

We deployed a variety of sampling gear over the course of the study. The majority of grid stations on the broad-scale survey cruises were sampled with a fully instrumented 8 x 2 m rectangular midwater trawl (EMT) that provided continuous information on the depth, temperature, salinity, pressure and volume of water filtered during deployment (Clark 1969). The upper net dimensions (height x width x length) were 2.0 x 1.415 x 11.88 m with a 333-μm mesh. The dimensions of the main net were 2.83 x 4.0 x 9.8 m with a 1600-μm mesh. At a few stations (<10% of total), inclement weather or technical difficulties with the EMT forced us to use a paired 1.4-m rectangular frame net, fitted with 250- and 300-μm mesh nets. On the first three broad-scale survey cruises the EMT was not available, and consequently, we deployed a 0.61-m diameter "bongo"
fitted with one 150- and one 250-µm mesh net. All of these gears were deployed to within 10 m of the bottom or to 75 m depth. Deployment rates were the same for all gear. If the tow duration for a single oblique tow was less than 10 min, a double oblique sample was collected. Net speeds were maintained at approximately 1 m s⁻¹ by regulating the ship speed. Depth information for both the bongo and frame net was estimated from cable angles and length deployed. At stations where the RMT could not be deployed, a conductivity-temperature-depth (CTD) cast was made to obtain physical data.

During broad-scale survey cruises a BIONESS was deployed at the grid station with the highest larval abundance (Samooa et al. 1980). The BIONESS was equipped with ten, 1-m³ 333-µm mesh nets. A CTD, fluorometer, and optical particle counting system provided continuous, real-time data during deployments. The BIONESS sampled discrete 5-m depth strata in the upper 25 m of the water column and 10-m depth strata at deeper depths to within 10 m of the bottom. Each net was open for 5 min. Tows speeds were maintained at 1 m s⁻¹. When conditions permitted, deployments were made at 4-h intervals for 48 h.

On the three tacking cruises we deployed only BIONESS and bongos. The bongo was used to conduct a survey of the area to be tracked using the same deployment criteria as in the broad-scale survey cruises. The deployment of the BIONESS was determined by the predictions of a physical oceanographic model and occurred at irregular intervals in time and space (S.E. Lochmann Dalhousie University, Halifax, NS, personal communication, detailed sampling methodology).

The physical data from each deployment were averaged into 1-m depth intervals. Temperature data resulting from RMT and CTD casts were treated differently from those obtained from BIONESS deployments. In the former, case temperature data for that station were averaged to produce a mean temperature for the 0- to 30-m strata, the depth range typical for cod eggs on the Scotian Shelf. For BIONESS deployments, we calculated the average temperature for the period during which each net was open. The average station temperature was calculated as the average temperature of those nets that sampled the 0- to 30-m depth strata. To investigate the stability of the water column, we selected three broad-scale grid stations to represent conditions.
Fig. 2. (A) Time series of seasonal variation in sea and incubation temperatures. Field temperature T_{sea} are averages for the 9- to 30-m depth strata for all stations occupied during a cruise. \circ, 1991-1992; \square, 1993-1995. Cruise mean nursery incubation temperatures (solid symbols, years as above) estimated from daily recording-eggs (mean \pm SD). (B) Stratification index calculated from equation 1 (see text). Data station 10 for 1991-1992 is shown as \circ, and for 1992-1993 as \square. Average data for stations 28 and 33 for the period shown are shown by solid symbols. The horizontal line separates samples characterized by stratified conditions (index \geq 8, above line) from those characterized by nonstratified conditions (index < 8, below line).

```latex
\begin{align*}
\text{Temperature [°C]} & \quad 16 \quad 12 \quad 8 \quad 4 \quad 0 \quad 4 \quad 8 \quad 12 \quad 16 \\
\text{Stratification index} & \quad 10 \quad 0 \quad -10 \quad -20 \\
\text{Day of Season (from Oct. 1)} & \quad 0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250
\end{align*}
```

on and off the bank. Station 10 (45°55.8′N, 62°56.0′W) was chosen to represent off-bank conditions, and stations 28 (43°43.5′N, 61°26.0′W) and 33 (43°55.0′N, 61°7.5′W) to represent on-bank conditions. For these stations we calculated a stratification index given by

$$H = \frac{\sigma_{str} - \sigma_{inf}}{Z_{max} - Z_{0}} \times 1000$$

where σ_z is density (kg m⁻³), and Z is water depth (m). Following Frank and McRuer (1989), we defined stratified waters as those for which $H > 8$. The median day was calculated for each cruise. As cod spawning begins late in the year, we chose October 1 as a reference day. Days from October 1 are used in subsequent analyses.

All net samples were sorted on-board ship and the eggs and larvae of cod and selected target species were removed. In this paper, we focus solely on the data derived from cod eggs. Late-stage eggs, that appeared healthy and undamaged by the collection process, were videotaped under a dissecting microscope at 6–50× magnification. Samples were sorted with a constant level of effort. A maximum of 20 eggs was videotaped from a single station. Thus, the number of eggs incubated at each station is an underestimate of the abundance of eggs at that station. However, on a cruise-by-cruise basis the number of eggs incubated on board will represent an index of egg abundance for that cruise. Individual eggs were incubated separately in 35-ml glass vials on a 12 h light - 12 h dark cycle in a refrigerator. Light from blue incandescent bulbs mimicked the light environment at depth. Nursery temperatures were recorded daily and maintained at near ambient temperature. Incubation temperatures were adjusted to the average water temperature at 0-30 m depth. BIONESS samples indicated that over 70% of the eggs we collected came from this depth layer. All eggs from the same cruise were incubated at the same temperature. However, because sea temperatures varied across the sampling grid, and with depth, there were unavoidable differences between incubation and ambient temperatures for individual eggs. Vials were checked every 12 h for hatching. When a larva hatched, it was immediately videotaped.

Videotape recordings were analyzed in the laboratory using an image analysis system (Optimars v3.11, Bioscan Corporation, Seattle, Wash.). We measured egg diameter and staged the egg according to Thompson and Riley’s (1982) system. Egg diameters were calculated from three digitized points on their circumference using the geometric formula for the diameter of an inscribed circle. Standard lengths of larvae that hatched from these eggs were measured.

All statistical analyses were conducted using SAS (SAS Institute Inc. 1985). Most analyses were conducted only on those cod eggs that hatched successfully. We restricted our analyses to these eggs because early stage cod, hadaddock (Melanogrammus aeglefinus), and witch flounder (Glyptocephalus cynoglossus) eggs are indistinguishable. To ensure that this procedure did not bias our results, we compared the size of all eggs that we could identify as cod, but did not hatch, to all those that successfully hatched using analysis of variance. Owing to the timing of the cruises, only the 1991-1992 and the 1992-1993 spawning seasons were fully sampled. Therefore, we restricted our analysis of the seasonal pattern in egg and larval traits to these two seasons. We asked two simple questions. (i) Is there a seasonal pattern in egg size? (ii) What is the correlation between egg and larval size? To analyze the seasonal pattern in egg diameter, and in particular, to test for bimodalities in the pattern, we used a simple sinusoidal model. We used least-squares techniques to provide parameter estimates of the equation:

$$\Phi_0 = \phi_0 + \mu + \sum_{k=1}^{N} [\rho_k \sin(\omega t_k) + \beta_k \cos(\omega t_k)] \times e^{\nu}$$

where Φ_0 is the mean diameter of eggs (mm) from the ith station on the ith day of the jth season, μ is a year
effect (year was coded as a dummy variable with 1991–1992 = 0 and 1992–1993 = 1). βs are estimated para-
meters for $k = 1$ and 2, and ω is given by $(2\pi r_m)^2$. Sign-
nificant first-order terms, i.e., $k = 1$, indicate a simple sea-
sonal temperature effect. Significant second-order terms, i.e.,
$k = 2$, indicate a bimodal pattern in egg diameter. We
investigated the direct effects of mean ambient station tem-
perature on mean station egg diameter using ANCOVA
with year as a class variable and ambient temperature as the
covariate. We tested for homogeneity of slopes, and con-
ditional on this finding we tested for equality of intercept.

We used standard length at hatch (SL) as our principal
measure of larval size. We analyzed the seasonality and
temperature dependence of SL in a similar fashion to egg
diameter. To analyze the correlation between egg diameter
and SL we used individual egg and larval measurements,
not station means. Assuming environmental variability within
a cruise to be negligible, we calculated correlations between
egg diameter and SL for each cruise. As we cannot make
this assumption for the full data set, we calculated partial cor-
relation coefficients between egg diameter and SL with the seasonal (given by Eq. 2), and temperature effects removed.

Results

The average temperature on the grid in the 0- to 30-m
depth strata varied seasonally. This temperature peaked at
approximately 15°C in late summer (August–September),
and was at a minimum of approximately 1–2°C in March
and April of both years (Fig. 2A). The maximum and min-
umum average temperatures observed at these depths were
19.3°C and 1.2°C, respectively. Incubation temperature
followed a similar seasonal cycle, but showed less variation
(Fig. 2A). The water column, both on and off the bank,
was generally well mixed from November to May of both
years (Fig. 2B). We conclude that the 0- to 30-m temper-
ature is a reliable index of the ambient temperature expe-
rienced by cod eggs.

On the Scotian Shelf, cod spawning was prolonged,
occurring from October until May. The earliest viable egg
sorted and videotaped on-board ship was collected on Octo-
ber 11, and the latest was collected on May 19. Eggs were
not equally abundant throughout the season (Fig. 3,
Table 1). Eggs were most abundant in November–December
in both years in which the full spawning season was sampled.

The diameter of eggs that hatched successfully, and
those that failed to hatch did not differ overall ($F_{\text{est}} =
1.99$, ns). The majority (>90%) of eggs incubated were
stage IV, and there was no significant difference between
the stages of eggs that hatched and those that did not
($\chi^2 = 1.6$, ns). The modal incubation time was 1 day (mean ±
SD = 1.51 ± 1.65, maximum = 10 d). There was no effect
of incubation temperature on incubation time. Overall,
57% of all eggs we incubated hatched successfully, but
on individual cruises, hatching success varied from 27 to
100% (Table 1). In the 1991–1992 season there was no
trend in the seasonal pattern of hatching success. How-
ever, in 1992–1993 there was a distinctly bimodal pattern
in hatching success, with peaks in January and April and a
trough in February. We conclude that there is no evidence
that analyzing only those eggs that successfully hatched

![Fig. 3. Monthly seasonal distribution of egg abundance on the Scotian Shelf expressed as a proportion of the annual production. (A) Relative abundance of stage IV eggs on Sable Island bank from SSIP data for the years 1979–1981, (after Brander and Hurley 1992; Table 2). (B) Relative abundance of stage IV eggs that successfully hatched in the ship-board nursery. Data for 1991–1992 are shown as #,#, and for 1992–1993 as #.*](image_url)

on-board ship, which we have done in all subsequent analy-
yses, biases our results.

Cod eggs were not evenly distributed spatially across the
sampling grid. The majority (87%) of all cod eggs were
collected in the central region of Sable and Western banks.
Autumn-spawned eggs were almost exclusively restricted to
this region (97% of all eggs videotaped). The highly
aggregated nature of the egg distribution meant that com-
parisons of egg stages and sizes between on- and off-bank
stations within each cruise were impossible. However,
there were no overall differences in egg stage or size
between on- and off-bank samples. The small spring peak
in abundance in 1993, apparent in Fig. 3, represents eggs
collected on one cruise from a localized area in the south-
west corner of the grid. These eggs were not different in
size from those collected on the bank.

Overall, egg diameters varied from 1.19 to 1.88 mm
(1.47 ± 0.11 mm). The distribution was not significantly
different from normal (Shapiro–Wilks $W = 0.984$, $n = 384$,
ns). Egg diameter varied seasonally (Fig. 4A). Harmonic
analysis indicated a dome-shaped seasonal pattern (Table 2A).
However, there was also a significant second-order term,
Table 1. Summary of eggs sorted and incubated during cruises on the Scotian Shelf from March 1991 – May 1993.

<table>
<thead>
<tr>
<th>Season</th>
<th>Cruise dates</th>
<th>Median day of cruise</th>
<th>Cod eggs incubated</th>
<th>% hatched</th>
<th>Number hatched by gear type</th>
<th>Size (mm)*</th>
<th>Correlation between egg and larval size, r*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>from Oct. 1</td>
<td></td>
<td></td>
<td>RMT</td>
<td>BIONESS</td>
<td>Tucker</td>
</tr>
<tr>
<td>1990–1991</td>
<td>27/4/91–11/5/91</td>
<td>213</td>
<td>11</td>
<td>82</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/11/91–21/11/91</td>
<td>46</td>
<td>42</td>
<td>93</td>
<td>39</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6/12/91–15/12/91</td>
<td>71</td>
<td>37</td>
<td>100</td>
<td>21</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6/1/92–18/1/92</td>
<td>99</td>
<td>11</td>
<td>100</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15/2/92–26/2/92</td>
<td>138</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/3/92–20/3/92</td>
<td>163</td>
<td>2</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/4/92–14/4/92</td>
<td>187</td>
<td>2</td>
<td>100</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17/4/92–8/5/92</td>
<td>207</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/5/92–26/5/92</td>
<td>230</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1992–1993</td>
<td>11/10/92–19/10/92</td>
<td>15</td>
<td>184</td>
<td>49</td>
<td>9</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/11/92–16/11/92</td>
<td>41</td>
<td>208</td>
<td>53</td>
<td>91</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22/11/92–12/12/92</td>
<td>65</td>
<td>62</td>
<td>65</td>
<td>37</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/1/93–22/1/93</td>
<td>109</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/2/93–25/2/93</td>
<td>143</td>
<td>15</td>
<td>27</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19/3/93–25/3/93</td>
<td>173</td>
<td>61</td>
<td>27</td>
<td>36</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/4/93–24/4/93</td>
<td>199</td>
<td>2</td>
<td>100</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/5/93–24/5/93</td>
<td>229</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Empty cells indicate that no eggs hatched for that gear type. Reported correlations between egg and larval sizes are from analyses of individual eggs and resulting larvae. Significance levels are reported as ns, not significant; *, p < 0.05; **, p < 0.01; ***. p < 0.001.

*Values are means with standard deviations given in parentheses.
*Cruises on which the BIONESS was the principal sampling gear.
*Values could not be calculated.
suggesting a bimodal pattern in egg size (Fig. 4A, Table 2A). Eggs were larger in 1992-1993 than in 1991-1992 (μ = 0.10, τ = 5.77, p < 0.001; Table 2A). Egg diameter was well correlated with ambient temperature (Fig. 4B). ANCOVA results indicated that temperature accounted for 91% of the variance, but that their intercepts were significantly different (Table 3A). Overall temperature and year effects explained 52% of the variation in egg diameter (Fig. 4B).

The SL of larvae that hatched from the eggs varied from 2.4-6 mm (4.39 ± 0.47 mm). The lower limit of this range may reflect prehatched individuals. SL was also normally distributed overall (Shapiro-Wilk W = 0.98, n = 384, m) and varied seasonally (Fig. 5A). However, year effects and second-order terms were not significant (Table 2B). There was no significant but weak correlation between SL and incubation temperature (r = 0.1, n = 384, p > 0.001). ANCOVA for ambient temperature indicated equality of slopes and intercepts for the 2 years (Fig. 5B, Table 3B). This infers that there is a common relationship between temperature and hatching size. Temperature accounted for 70% of the variability in SL. Correlations between egg diameter and SL for individual cruises were highly variable (Table 1). For 6 of the 12 cruises the correlation was not significant (Table 1). The lack of significance does not simply reflect small sample sizes; one of the nonsignificant correlations comes from the second largest sample. Partial correlation analysis of all of the individual egg and larval data indicated a significant correlation between egg and larval sizes (partial r = 0.29, n = 373, p < 0.001; Fig. 6).

Discussion

On Sable and Western banks, cod spawning was prolonged. Viable cod eggs were present from October to May in all years. An earlier extensive ichthyoplankton survey conducted in this area during 1979-1981, the Scotian Shelf Ichthyoplankton Programme (SSIP), also documented prolonged spawning over a similar period (Brander and Hurley 1992). However, the SSP data suggest a strongly bimodal spawning distribution, with a weaker peak in November and a stronger peak in April-May (Brander and Hurley 1992). We did not find evidence for a strongly bimodal spawning distribution. Moreover, in our data the autumn spawning was clearly stronger than the spring event. An otolith-based birth date frequency analysis similarly suggests a dominant autumn spawning (M.G. Meekan, Université Laval, Laval, QC, personal communication). The decline in strength of the spring cohort appears not to be a local phenomenon. In an elegant analysis of length at age 1 data from standard trawl surveys, Frank et al. (1994) show evidence for a decline in the spring cohort over the entire western Scotian Shelf from 1984 onwards. Thus, it is unlikely that our data reflect a shift in spawning location instead of a change in spawning effort.

We found substantial variability in cod egg and larval hatching sizes. Egg diameters varied by over 46% from 1.19 to 1.58 mm, and larval SLs varied by 84% from 2.4 to 6.1 mm. Egg size varied seasonally. Several features of this relationship are of importance. The overall seasonal pattern was dome-shaped with smaller eggs occurring both early and late in the season. We suggest that this pattern results from the effects of the changing temperature signal on the shelf. Indeed variation in ambient temperature explains 52% of the variation in egg diameter. However, the finding of significantly different intercepts in the ANCOVA
Fig 4. Characteristics of individual cod eggs. (A) Seasonal change in egg diameter (station mean ± SD). Symbols without associated errors indicate only one egg collected. Symbols are: ○, 1990–1991; ◇, 1991–1992; □, 1992–1993 cohorts. The 1990–1991 data are shown for comparison, but were not used in analyses. Regression estimates of seasonal pattern in egg diameter, derived from Eq. 2 (see text) for 1991–1992 is a solid line and for 1992–1993 is a broken line. (B) Relationship between egg diameter (station mean ± SD) and mean 0- to 30-m temperature. Symbols as in A. Fitted regression, derived from ANCOVA after evaluating equality of slopes, is \(\Phi_n = 1.59 - 0.0166T + 0.132T^2 \), \(r^2 = 0.52 \), n = 86, p < 0.001.

results indicates that temperature cannot be the sole mechanism influencing egg diameters. There was some evidence of bimodality in egg diameter, with the late (spring) mode exhibiting larger predicted maximum egg sizes. The presence of the two peaks may reflect the historical bimodal spawning pattern. Alternatively, the bimodal pattern may be a statistical artifact of the temporal distribution of our collections, especially given the lack of bimodality in the SL data.

Our data do not exhibit the simple declining seasonal egg size reported for Northeast Atlantic cod by Knutsen and Tilshead (1985). We suggest the difference between the pattern in the Northwest and Northeast Atlantic reflects the lengths of the two spawning seasons. In Scotian Shelf waters cod spawn over 6 months, in temperatures between 1 and 14°C. In Northeast Atlantic waters, the duration of spawning is reduced to the spring period only when water temperatures are increasing from their minimum to approximately 5°C (Ellertsen et al. 1989; Hessen and Rijksdorp 1985). Thus, the seasonal pattern of egg diameter for Northeast Atlantic cod may simply represent the descending arm of the entire seasonal pattern for Scotian Shelf cod.

Page and Frank (1989) provide data on cod incubation times as a function of temperature. Their data suggest that cod eggs on the Scotian Shelf incubation times vary from 8 to 42 days at 14 and 1°C, respectively. This fivefold difference in incubation time may have important implications for egg survival and recruitment, particularly given the apparent reduction of the historically dominant spring spawned cohort. If egg survival is related negatively to incubation time, the survival from the autumn spawning peak that now prevails could be dramatically inferior to that which has occurred historically.

Egg and larval sizes were positively correlated. However, the relationship is not simple. The strength of correlations varied widely from cruise to cruise. In general correlations became weaker as sample sizes increased. These correlations ignore seasonal effects. When we removed seasonal effects, egg diameter explained 33% of the variation in larval SL. Laboratory studies suggest that egg size is highly correlated with larval hatching size (Miller et al. 1988). However, this expectation is derived from analyses based upon group means. The \(r^2 \) we obtained, 30%, is not markedly different from that derived from an analysis of capelin conductance at the individual level (Chambers et al. 1989). Furthermore, traditional studies that have reported higher \(r \) have continuously exposed the eggs to a constant temperature, and the data are often derived from restricted brood stocks (R.C. Chambers Humman Marine Laboratory, St. Andrews, NB, personal communication). In contrast, in the field, individual eggs from different females co-occur and are exposed to a variable temperature regime. We suggest this acts to uncouple egg and larval size. For example, while we observed significant inter-year differences in egg diameters, we failed to detect this effect in the larvae that hatched from these eggs. Thus, a given size of larvae was produced by different egg sizes in the 2 years we studied in detail. Together, these genetic and environmental factors should increase the expected variance in the egg size — hatching size relationship and lead to a lower correlation coefficient.

If cod eggs and larvae are subject to size-dependent processes on the Scotian Shelf, the variation we document may have substantial survival consequences. There are several potential implications of size variability. If egg predation is size dependent, larger eggs may be more vulnerable to predation. Larger eggs also incubate for longer periods (Chambers et al. 1989). Thus, larger eggs will be vulnerable to predators for longer periods than are small eggs. Consequently, larger eggs could experience lower survival than smaller eggs. North Sea cod that are larger at hatching have relatively larger yolks, and improved foraging abilities (Knutsen and Tilshead 1985). Thus, larger larvae may be less restricted in the timing of first feeding and the size of prey eaten. Furthermore, analyses for other
species based on group mean sizes also suggest such an advantage (Rana 1985; Marsh 1986; Miller et al. 1988). Yet, Chambers et al.'s (1989) analysis of individual-level data conflicts with such an expectation, so it is unclear whether increased size will translate into increased resistance to starvation. Similarly, the effects of increased larval size on vulnerability to predation are unclear. Litvak and Leggett (1992) and Pepin et al. (1992) suggest that small larvae may experience lower overall predation rates. However, once subject to an encounter, larger larvae do have an increased ability to escape (Miller et al. 1988).

What are the implications of our findings for cod recruitment on the Scotian Shelf? The timing of spawning has been suggested as being influenced by the seasonal pattern in productivity on the shelf (Gagné and O'Boyle 1984; O’Boyle et al. 1984; Brander and Hurley 1992). However, these authors differ in the extent to which they attribute the timing of spawning to a match between larval and potential prey. If spawning is strongly keyed to the abundance of prey, the reduction in the spring cohort documented here may reflect changes in the ecology of zooplankton on the bank. Alternatively, the change in spawning distribution may reflect underlying changes in the adult population. If the historical bimodality in spawning reflected two separate populations using the bank, the reduction in the spring cohort may result from dramatic changes in one of these two groups. However, if only one population spawns on the bank, the shift in the spawning distribution may reflect changes in the size or age structure of the population. Evidence from DFO groundfish surveys supports the latter possibility (Moyn and MacEachern 1993). These data suggest a dramatic decline in the abundance of older and larger females in the population since the SSIP cruises. This could account for the observed reduction in spring spawning. However, until the spawning biology of these stocks is fully understood, we cannot distinguish between these alternatives.

In summary, we have shown considerable phenotypic variation among individual cod eggs and larvae on the Scotian Shelf. Importantly, we report one of the first examples of longitudinal data collected on individuals caught in the field. The data, thus, represent the first accurate field examination of the initial variability in egg and larval sizes in a population. Our data suggest that there is considerable potential for phenotypic selection among individual cod eggs and larvae of different sizes on the Scotian Shelf.

The selection in individual variability has the potential to significantly influence individual survival and possibly the pattern of recruitment in the population.

Acknowledgements

We thank François Landry, Rob Douglas, and Patricia Avendado for help in videotaping samples at sea. The cruises that provided these data could not have been conducted without the assistance of a team of colleagues from Dalhousie and Dalhousie universities. We thank Capt. Wayne Walters and the crew of the Petrel V for their help and
enthusiasm throughout the project. Joe Brown, Liz Deblois, Doug Bertram, Ken Frank, Jan McLaren, and two anonymous reviewers provided critical reviews of previous versions of this manuscript. Funding for this research was provided by OCEAN (the Ocean Production Enhancement Network), one of 15 Networks of Centres of Excellence supported by the Government of Canada, through the Natural Sciences and Engineering Research Council of Canada, and by a grant from Fonds pour la Formation de Chercheurs et l’Aide à la Recherche (FCAR) to W.C.L.

References
dity and gonad weight variability in northwest Atlantic her-
stage Atlantic cod (Gadus morhua), haddock (Melanogram-
Clark, M.R. 1969. A new midwater trawl for sampling dis-
Frank, K.T., and McKeen, J.K. 1989. Nutritional status of fields-collected haddock (Melanogrammus aeglefinus) larvae from southwestern Nova Scotia: An assessment based on mor-
Gagne, J.A., and O'Boyle, R.N. 1984. The timing of cod spawn-
Hardy, J.D., Jr. 1978. Development of fish of the Mid-